5. Publications

*denotes first author by Cziczo group student or post-doc **denotes MIT News Highlight


Preparation, Submitted and Under Revision


*1. Zawadowicz, M. A, et al., Quantifying and improving the performance of the Laser Ablation Aerosol Particle Time of Flight Mass Spectrometer (LAAPToF) instrument, revised for Atmos. Meas. Tech. (2017).


*2. Garimella, S., et al., How uncertainty in field measurements of ice nucleating particles influences modeled cloud forcing, revised for J. Atmos. Sci. (2017).


*3. Osman, M. et al., Real time analyses of insoluble particles in glacial ice using single particle mass spectrometry, submitted to Atmos. Meas. Tech. (2017).


*4. Zawadowicz, M. A, et al., Measurement and Modeling of the Vertical and Seasonal Abundance of Bioaerosol, submitted to Nature Geosciences (2017).


*5. Garimella, S., et al., A previously unrealized climate and health co-benefit from reduced coal fly ash emission, submitted to Nature Climate Change (2017).


*6. Christopoulos, C. et al., A Machine Learning Approach to Aerosol Classification for Single Particle Mass Spectrometry, in preparation for Atmos. Meas. Tech. (2017).




*70 Garimella, S., et al., Uncertainty in counting ice nucleating particles with continuous diffusion flow chambers, accepted at Atmos. Chem. Phys. (2017).


*,**69. Zawadowicz, M. A, et al., Improved identification of primary biological aerosol particles using single particle mass spectrometry, accepted at Atmos. Chem. Phys. (2017).


*68. Roesch, M. and Cziczo, D. J., Dry particle generation with a 3D printed fluidized bed generator, accepted at Atmos. Meas. Tech. (2017).


  1. Hiranuma N., et al., Development and characterization of an ice-selecting pumped counterflow virtual impactor (IS-PCVI) to study ice crystal residuals, Atmos. Meas. Tech., 9, 3817–3836 (2016).


*66. Garimella, S., et al., The SPectrometer for Ice Nuclei (SPIN): A new instrument to investigate ice nucleation, Atmos. Meas. Tech., 9, 2781–2795 (2016).


  1. Tang, M., Cziczo, D. J., and Grassian, V., Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, Chem. Rev., DOI: 10.1021/acs.chemrev.5b00529 (2016).


*64. Zawadowicz, M. A, et al., Single-Particle Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and Ionization Laser, Anal. Chem., 10.1021/acs.analchem.5b03158 (2015).


*,**63. Ardon-Dryer, K., Huang, Y.-W. and Cziczo, D. J., Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis, Atmos. Chem. Phys., 15, 9159–9171 (2015).


*62. Zawadowicz, M. A, Proud, S. R., Seppalainen, S. S. and Cziczo, D. J., Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions, Atmos. Chem. Phys., 15, 8975–8986 (2015).


*61. Ardon-Dryer, K., Garimella, S., Huang Y.-w., Christopoulos, C., and Cziczo, D. J., Evaluation of DMA Size Selection of Dry Dispersed Mineral Dust Particles, in press at Aero. Sci. Tech. (2015).


60. Atkinson, D. et al., Aerosol Optical Hygroscopicity Measurements during the 2010 CARES Campaign, in press at A.C.P. (2015).


*59. Garimella, S., Y.-W. Huang, J. Seewald, and D. J. Cziczo, Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material, A.C.P. 14, 6003 (2014).


58. Cziczo, D. J.  and K. D. Froyd, Sampling the Composition of Cirrus Ice Residuals, Atmos. Res., 142, 15-31 (INVITED, 2014).


**57. Cziczo, D. J. et al. Ice nucleation by surrogates of Martian mineral dust: What can we learn about Mars without leaving Earth?, J. Geophys. Res. : Planets, 118, 1–10 (2013).


**56. Cziczo, D. J. et al. Clarifying the dominant sources and mechanisms of cirrus cloud formation, Science, 340, 1320-1323 (2013).


*55. Friedman, B. et al., Cloud Condensation Nuclei Measurements at a High Elevation Site:  Composition and Hygroscopicity, A.C.P., 13, 11839-11851 (2013).


54. Pekour, M. et al., Development of a new airborne humidigraph system, Aero. Sci. Tech. 47, 201-207 (2013).


53. Baustian, K. J., D. J. Cziczo, M. E. Wise, K. A. Pratt, G. Kulkarni, A. G. Hallar and M. A. Tolbert, Importance of Aerosol Composition, Mixing State and Morphology for Depositional Ice Nucleation: A Combined Field and Laboratory Approach, J. Geophys. Res. 117, D06217 (2012).


52. Zaveri, R.A. et al., Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES), A.C.P., 12, 7647–7687 (2012).


51. Pierce, J. R. et al., Nucleation and Condensational Growth to CCN Sizes During a Sustained Pristine Biogenic SOA Event in a Forested Mountain Valley, A.C.P., 12, 3147-3163 (2012).


50. Wong, J. P. S., A. K. Y. Lee, J.G. Slowik, D. J. Cziczo, W. R. Leaitch, A. Macdonald, and J. P. D. Abbatt, Oxidation of Ambient Biogenic Secondary Organic Aerosol by Hydroxyl Radicals: Effects on Cloud Condensation Nuclei Activity, Geophys. Res. Lett., 10.1029/2011GL049351 (2011).


49. Baumgardner, D. et al., In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds, B.A.M.S. 10.1175/BAMS-D-11-00123.1 (2011).


*48. Hiranuma N., M. Kohn, M. S. Pekour, D. A. Nelson, J. E. Shilling, and D. J. Cziczo, Droplet Activation, Separation, and Compositional Analysis: Laboratory Studies and Atmospheric Measurements, A.M.T. 10.5194/amt-4-2333-2011 (2011).


47. Slowik, J. G., D. J. Cziczo, and J. P. D. Abbatt, Analysis of Cloud Condensation Nuclei Composition and Growth Kinetics Using a Pumped Counterflow Virtual Impactor and Aerosol Mass Spectrometer, A.M.T. 10.5194/amt-4-1677-2011 (2011).


*46. Friedman, B., G. Kulkarni, J. Beránek, A. Zelenyuk, J. A. Thornton, and D. J. Cziczo, Ice Nucleation and Droplet Formation by Bare and Coated Soot Particles, J. Geophys. Res. 10.1029/2011JD015999 (2011).


*45. Pekour, M. and D. J. Cziczo, Wake Capture, Particle Breakup and Other Artifacts Associated with Counterflow Virtual Impaction, Aero. Sci. Tech. 45, 748 (2011).


*44. Kulkarni, G., M. Pekour, A. Afchine, D. M. Murphy, and D. J. Cziczo, Comparison of Experimental and Numerical Studies of the Performance Characteristics of a Pumped Counterflow Virtual Impactor, Aero. Sci. Tech. 45, 382 (2011).


43. McFarquhar, G. et al., Indirect and Semi-Direct Aerosol Campaign (ISDAC): The Impact of Arctic Aerosols on Clouds, B.A.M.S. 10.1175/2010BAMS2935.1 (2010).


42. Kamphus, M. et al., Chemical Composition of Ambient Aerosol, Ice Residues and Cloud Droplet Residues in Mixed-Phase Clouds: Single Particle Analysis During the Cloud and Aerosol Characterization Experiment (CLACE 6), A.C.P. 10, 8077 (2010).


41. Spichtinger, P., and D. J. Cziczo, Impact of Heterogeneous Ice Nuclei on Homogeneous Freezing Events, J. Geophys. Res. 10.1029/2009JD012168 (2010).


40. Kammermann, L. et al., Arctic Atmospheric Aerosol Composition 3: CCN Prediction Using Hygroscopic Growth Factors as a Chemistry Proxy, J. Geophys. Res. 10.1029/2009JD012447 (2010).


39. D. J. Cziczo, et al., Deactivation of Ice Nuclei Due to Atmospherically Relevant Surface Coatings, Environ. Res. Lett., 10.1088/1748-9326/4/4/044013 (2009).


38. D. J. Cziczo, et al., Inadvertent Climate Modification Due to Anthropogenic Lead, Nature Geosciences, 10.1038/ngeo499 (2009).


*37. Freidman, B. et al., Arctic Atmospheric Aerosol Composition 1: Ambient Aerosol Characterization, J. Geophys. Res. 10.1029/2009JD011772 (2009).


*36. Herich, H. et al., Arctic Atmospheric Aerosol Composition 2: Hygroscopic Growth Properties, J. Geophys. Res. 10.1029/2008JD011574 (2009).


*35. Herich, H. et al., Water Uptake of Clay and Desert Dust Aerosols at Sub- and Supersaturations, P.C.C.P. 10.1039/b901585j (2009).


34. Cozic, J. et al., Black Carbon Enrichment in Atmospheric Ice Particle Residuals Observed in Lower Tropospheric Mixed-Phase Clouds, J. Geophys. Res., 10.1029/2007JD009266 (2008).


*33. Gallavardin, S., U. Lohmann, and D. J. Cziczo, Analysis and Differentiation of Mineral Dust by Single Particle Laser Mass Spectrometry, I.J.M.S., 274, 52 (2008).


*32. Gallavardin, S. et al., Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber, Aero. Sci. Tech., 42, 773 (2008).


*31. Herich, H. et al., In-situ determination of atmospheric aerosol composition as a function of hygroscopic growth, J. Geophys. Res., 10.1029/2008JD009954 (2008).


30. Murphy, D. M. et al., Distribution of Lead in Single Atmospheric Particles, A.C.P., 7, 3763 (2007).


29. Murphy, D. M., D. J. Cziczo, P. K. Hudson, and D. S. Thomson, Carbonaceous Material in Aerosol Particles in the Lower Stratosphere and Tropopause Region, J. Geophys. Res., 10.1029/2006JD007297 (2007).


28. Richardson, M. S. et al., Measurements of Heterogeneous Ice Nuclei in the Western U.S. in Springtime and Their Relation to Aerosol Sources, J. Geophys. Res., 10.1029/2006JD007500 (2007).


27. D. J. Cziczo, D. S. Thomson, T. Thompson, P. J. DeMott, and D. M. Murphy, Aerosol Mass Spectrometry Studies of Ice Nuclei and Other Low Number Density Particles, I.J.M.S., 258, 21 (2006).


26. Abbatt, J. P. et al., Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for  Cirrus Cloud Formation, Science, 313, 1770 (2006).


25. Boulter, J. E., D. J. Cziczo, A. M. Middlebrook, D. S. Thomson, and D. M. Murphy, Design and Performance of a Pumped Counterflow Virtual Impactor, Aero. Sci. Tech., 40, 969 (2006).


24. Murphy, D. M. et al., Single-Particle Mass Spectrometry of Tropospheric Aerosol Particles, J. Geophys. Res., 10.1029/2006JD007340  (2006).


23. Zobrist, B. et al., Oxalic Acid as Heterogeneous Ice Nucleus in the Upper Troposphere and its Indirect Aerosol Effect, A.C.P.D., 6, 3115 (2006).


22. Jensen, E. et al., Ice Supersaturations Exceeding 100% at the Cold Tropical Tropopause: Implications for Cirrus Formation and Dehydration, Atmos. Chem. Phys., 5, 851 (2005).


21. Brock, C. A. et al., Chemical and Microphysical Characteristics of Aerosols in the Free Troposphere Near the West Coast of North America, J. Geophys. Res., 10.1029/2003JD004198 (2004).


20. Hudson, P. K. et al., Biomass burning particle measurements: characteristic composition and chemical processing, J. Geophys. Res. 10.1029/2003JD004398 (2004).


19. Jost, H.-J., et al., In-situ observations of mid-latitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett., 10.1029/2003GL019253 (2004).


18. Murphy, D. M. et al., Particle Generation and Resuspension in Aircraft Inlets When Flying in Clouds, Aero. Sci. Tech., 38, 400 (2004).


17. Murphy, D. M., D. J. Cziczo, P. K. Hudson, M. E. Schein, and D. S. Thomson, Particle Density Inferred from Simultaneous Optical and Aerodynamic Diameters Sorted by Composition, J. Aero. Sci., 35, 135 (2004).


16. Ray, E. A. et al., Evidence of the Effect of Summertime Midlatitude Convection on the Subtropical Lower Stratosphere from CRYSTAL-FACE Tracer Measurements, J. Geophys. Res., 10.1029/2003JD004143 (2004).


15. Tuck, A. et al., Horizontal Variability 1-2 km Below the Tropical Tropopause, J. Geophys. Res., 10.1029/2003JD003942 (2004).


14. D. J. Cziczo et al., Observations of Organic Species and Atmospheric Ice Formation, Geophys. Res. Lett., 10.1029/2004GL019822 (2004).


13. D. J. Cziczo, D. M. Murphy, P. K. Hudson, and D. S. Thomson, Single Particle Measurements of the Chemical Composition of Cirrus Ice Residue During CRYSTAL-FACE, J. Geophys. Res., 10.1029/2003JD004032 (2004).


12. D. J. Cziczo et al., A Method for Single Particle Mass Spectrometry of Ice Nuclei, Aero. Sci. Tech., 37, 460 (2003).

31. DeMott, P. J., D. J. Cziczo, A. Prenni, D. M. Murphy, S. Kreidenweis, D. S. Thomson, and R. Borys, Compositions and Concentrations of Atmospheric Ice Nuclei, P.N.A.S., 100, 14655 (2003).


11. DeMott, P. J., D. J. Cziczo, A. Prenni, D. M. Murphy, S. Kreidenweis, D. S. Thomson, and R. Borys, Compositions and Concentrations of Atmospheric Ice Nuclei, P.N.A.S., 100, 14655 (2003).


10. Eliason, T. L., S. Aloisio, D. J. Donaldson, D. J. Cziczo and V. Vaida, Processing of Unsaturated Organic Acid Films and Aerosols by Ozone, Atmos. Environ., 37, 2207 (2003).


9. Wise, M. E., S. D. Brooks, D. J. Cziczo, and M. A. Tolbert, Solubility and Freezing Effects of Fe2+ and Mg2+ Solutions at Upper Tropospheric and Lower Stratospheric Temperatures and Compositions, J. Geophys. Res., 10.1029/2003JD003420 (2003).


8. D. J. Cziczo, D. M. Murphy, D. S. Thomson, and M.  Ross, Composition of Individual Particles in the Plume Wakes of an Athena II Rocket and the Space Shuttle, Geophys. Res. Lett., 10.1029/2002GL015991 (2002).


7. C. F. Braban, D. J. Cziczo, and J. P. D. Abbatt, Deliquescence of Ammonium Sulfate Particles at Sub-Eutectic Temperatures, Geophys. Res. Lett., 28, 3879 (2001).


6. D. J. Cziczo and J. P. D. Abbatt, Ice Nucleation in NH4HSO4, NH4NO3, and H2SO4 Aqueous Particles: Implications for Cirrus Cloud Formation, Geophys. Res. Lett., 28, 963 (2001).


5. D. J. Cziczo, D. S. Thomson, and D. M. Murphy, Ablation, Flux and Atmospheric Implications of Meteors Inferred from Stratospheric Aerosol, Science, 291, 1772 (2001).


4. D. J. Cziczo and J. P. D. Abbatt, Infrared Observations of the Response of NaCl, NH4HSO4, MgCl2, NH4HSO4, and NH4NO3 Aerosols to Changes in Relative Humidity from 298 to 238 K, J. Phys. Chem. A., 104, 4825 (2000).


3. O. P. Arora, D. J. Cziczo, A. M. Morgan, J. P. D. Abbatt, and R. F. Niedziela, Uptake of Nitric Acid by Sub-Micron-Sized Ice Particles, Geophys. Res. Lett., 26, 3621 (1999).


2. D. J. Cziczo and J. P. D. Abbatt, Deliquescence, Efflorescence, and Supercooling of (NH4)2SO4 Aerosols at Low Temperature: Implications for Cirrus Cloud Formation and Aerosol Phase in the Atmosphere, J. Geophys. Res., 104, 13,781 (1999).


1. D. J. Cziczo, J. B. Nowak, J. H. Hu, and J. P. D. Abbatt, Infrared Spectroscopy of Model Tropospheric Aerosols as a Function of Relative Humidity: Observations of Deliquescence and Crystallization, J. Geophys. Res., 102, 18,843 (1997).

Leave a Reply